Finite Element Simulation and Experiment of Chip Formation Process during High Speed Machining of AISI 1045 Hardened Steel

نویسندگان

  • C. Z. Duan
  • T. Dou
  • Y. J. Cai
  • Y. Y. Li
چکیده

As an advanced manufacturing technology which has been developed rapidly in recent years, high speed machining is widely applied in many industries. The chip formation during high speed machining is a complicated material deformation and removing process. In research area of high speed machining, the prediction of chip morphology is a hot and difficult topic. A finite element method based on the software ABAOUS which involves Johnson-Cook material model and fracture criterion was used to simulate the serrated chip morphology and cutting force during high speed machining of AISI 1045 hardened steel. The serrated chip morphology and cutting force were observed and measured by high speed machining experiment of AISI 1045 hardened steel. The effects of rake angle on cutting force, sawtooth degree and space between sawteeth were discussed. The investigation indicates that the simulation results are consistent with the experiments and this finite element simulation method presented can be used to predict the chip morphology and cutting force accurately during high speed machining of hardened steel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Method Simulation of Machining of AISI 1045 Steel With A Round Edge Cutting Tool

In this paper, FEM modeling and simulation of orthogonal cutting of AISI 1045 steel is studied by using dynamics explicit Arbirary Lagrangian Eulerian method. The simulation model utilizes the advantages offered by ALE method in simulating plastic flow around the round edge of the cutting tool and eliminates the need for chip separation criteria. JohnsonCook work material model is used for elas...

متن کامل

Effect of cutting parameters on tool-chip interface temperature in an orthogonal turning process

The aim of this paper is to investigate the effect of cutting speed and uncut chip thickness on cutting performance. A Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material mode and Coulombs friction law was used to simulate of High Speed Machining (HSM) of AISI 1045 steel. In this simulation work, feed rate ranging from 0.05 mm/rev to 0.13 mm/re...

متن کامل

Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools

High speed machining of hardened steels for manufacturing dies and molds offers various advantages, but the productivity often limited by mainly tool life. This study investigates the influence of edge preparation in cubic boron nitrite (CBN) cutting tools on process parameters and tool performance by utilizing practical finite element (FE) simulations and high speed orthogonal cutting tests. T...

متن کامل

An Investigation into the Microstructure of Adiabatic Shear Banding in AISI 1045 Hardened Steel due to High Speed Machining C.Z.Duan

Adiabatic shear banding during high speed machining is important to understand material removal mechanisms. This paper investigates the microstructure of adiabatic shear bands (ASBs) in the serrated chips produced during the high speed machining of AISI 1045 hardened steel. Optical microscope, scanning electronic microscope(SEM) and transmission electronic microscope(TEM) were used to explore t...

متن کامل

Experimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted

Turning of hardened steels using a single point cutting tool has replaced the cylindrical grinding now as it offers attractive benefits in terms of lower equipment costs, shorter set up time, fewer process setups, higher material removal rate, better surface quality and elimination of cutting fluids compared to cylindrical grinding. In order to obtain desired surface quality by machining, pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009